Recycling of the yeast v-SNARE Sec22p involves COPI-proteins and the ER transmembrane proteins Ufe1p and Sec20p.

نویسندگان

  • W Ballensiefen
  • D Ossipov
  • H D Schmitt
چکیده

Vesicle-specific SNAP receptors (v-SNAREs) are believed to cycle between consecutive membrane compartments. The v-SNARE Sec22(Sly2)p mediates the targeting of vesicles between endoplasmic reticulum (ER) and early Golgi of Saccharomyces cerevisiae. To analyze factors involved in targeting of Sec22(Sly2)p, an alpha-factor-tagged Sec22 protein (Sec22-alpha) was employed. Only on reaching the late Golgi, can alpha-factor be cleaved from this hybrid protein by Kex2p, a protease localized in this compartment. In wild-type cells Kex2p-cleavage is observed only when Sec22-alpha is greatly overproduced. Immunofluorescence microscopy and subcellular fractionation studies showed that Sec22-alpha is returned to the ER from the late Golgi (Kex2p) compartment. When Sec22-alpha is expressed in wild-type cells at levels comparable to the quantities of endogenous Sec22p, very little of this protein is cleaved by Kex2p. Efficient cleavage, however, occurs in mutants defective in the retrograde transport of different ER-resident proteins indicating that Sec22-alpha rapidly reaches the late Golgi of these cells. These mutants (sec20-1, sec21-1, sec27-1 and ufe1-1) reveal Golgi structures when stained for Sec22-alpha and do not show the ER-immunofluorescence observed in wild-type cells. These results show consistently that Sec22p recycles from the Golgi back to the ER and that this recycling involves retrograde COPI vesicles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel SNARE complex implicated in vesicle fusion with the endoplasmic reticulum.

Intracellular vesicular traffic is controlled in part by v- and t-SNAREs, integral membrane proteins which allow specific interaction and fusion between vesicles (v-SNAREs) and their target membranes (t-SNAREs). In yeast, retrograde transport from the Golgi complex to the ER is mediated by the ER t-SNARE Ufe1p, and also requires two other ER proteins, Sec20p and Tip20p, which bind each other. A...

متن کامل

Golgi-to-endoplasmic reticulum (ER) retrograde traffic in yeast requires Dsl1p, a component of the ER target site that interacts with a COPI coat subunit.

DSL1 was identified through its genetic interaction with SLY1, which encodes a t-SNARE-interacting protein that functions in endoplasmic reticulum (ER)-to-Golgi traffic. Conditional dsl1 mutants exhibit a block in ER-to-Golgi traffic at the restrictive temperature. Here, we show that dsl1 mutants are defective for retrograde Golgi-to-ER traffic, even under conditions where no anterograde transp...

متن کامل

The coatomer-interacting protein Dsl1p is required for Golgi-to-endoplasmic reticulum retrieval in yeast.

Sec22p is an endoplasmic reticulum (ER)-Golgi v-SNARE protein whose retrieval from the Golgi compartment to the endoplasmic reticulum (ER) is mediated by COPI vesicles. Whether Sec22p exhibits its primary role at the ER or the Golgi apparatus is still a matter of debate. To determine the role of Sec22p in intracellular transport more precisely, we performed a synthetic lethality screen. We isol...

متن کامل

Dsl1p, Tip20p, and the novel Dsl3(Sec39) protein are required for the stability of the Q/t-SNARE complex at the endoplasmic reticulum in yeast.

The "Dsl1p complex" in Saccharomyces cerevisiae, consisting of Dsl1p and Tip20p, is involved in Golgi-ER retrograde transport and it is functionally conserved from yeast to mammalian cells. To further characterize this complex, we analyzed the function of Dsl3p, a protein that interacts with Dsl1p in yeast two hybrids screens. DSL3, recently identified in a genome wide analysis of essential gen...

متن کامل

SNAREs support atlastin-mediated homotypic ER fusion in Saccharomyces cerevisiae

Dynamin-like GTPases of the atlastin family are thought to mediate homotypic endoplasmic reticulum (ER) membrane fusion; however, the underlying mechanism remains largely unclear. Here, we developed a simple and quantitative in vitro assay using isolated yeast microsomes for measuring yeast atlastin Sey1p-dependent ER fusion. Using this assay, we found that the ER SNAREs Sec22p and Sec20p were ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 111 ( Pt 11)  شماره 

صفحات  -

تاریخ انتشار 1998